RESEARCH GRADE

LIQUID HANDLING PRODUCTS

2013/2014 CATALOG

Sorenson BioScience, Inc. is a manufacturer of disposable plastic liquid handling products. Located in Salt Lake City, Utah, Sorenson was founded in 1981 as Mµlti Technology, Inc. The company rapidly became an innovator in the manufacture of liquid handling products for scientific research. Stressing quality in every product, Mµlti began developing features that provided greater accuracy and reproducibility for the most exacting fields of science.

In 1991, Multi joined the Sorenson group of companies and became Sorenson BioScience, Inc. In April of 2003, Sorenson BioScience, Inc. became an ISO 9001:2000 registered company.

Today, Sorenson is known for its high quality products and continued manufacturing excellence.

Visit Sorenson BioScience at **www.sorbio.com** to access the latest information on Sorenson BioScience and its products.

Included on the web site are Sorenson's full product offering, the latest products and photographs, product specification sheets, lot certificates, chemical compatibility information, product search wizard, literature library including validation studies, and frequently asked questions. Visit **www.sorbio.com** for these things, and more.

Table of Contents

Page
Pipette Tips
Pipette Tip Packaging Options
MµltiGuard™ Barrier Pipette Tips
OneTouch Pipette Tips6-7
Ultra-Micro and Standard Universal Fit Pipette Tips
Gel Loading Pipette Tips
Pipette Tip Compatibility Chart
Tubes and Vials
SafeSeal Microcentrifuge Tubes
Low Binding Microcentrifuge Tubes
TabTop Microcentrifugre Tubes and MCT Storage
TwistTop Vials
BenchTop Pipettor
Semi-automated BenchTop Pipettor
PCR Products
µltraAMP™ PCR Plates
µltraAMP PCR Plates Compatibility Chart
µltraAMP PCR Plate and Tube Sealers
PCR Tubes and Tube Strips: µltraTubes and µltraStrips
Freeze Block, DeepWell Plates
Disposable Reagent Reservoirs
Index

Pipette Tip Packaging Options

Pipette Tip Packaging Options:

Choose the right tip and the right packaging option. Each packaging option is identified in the tip ordering information tables by icons as presented below:

Bulk Tips

Racked Tips

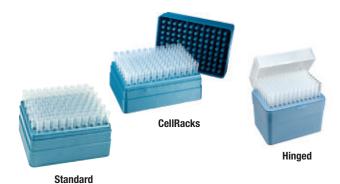
e•dek™

TipStation

Platinum Reload System

QuickRack

Gel Loading Tips



Bulk Tips

1,000 loose tips packaged in resealable bags*

Available Tips: Wide selection

*1,000 µl XT bulk bags exception: 768 tips/bag

Racked Tips

Sorenson tips are available in sturdy racks that withstand several autoclave cycles

CellRacks hold tips steadily in fully enclosed cells, minimize static and are excellent platforms for single and multichannel pipetting. **Hinged** racks hold the extremely popular 1000XT (50-1250 μ I) tips, and traditional 1000 μ I standard tips are placed in 100-hole **standard** racks.

· Available Tips: Wide selection

e · dek - Paperboard Rack System

- Easy to recycle compatible with most paperboard recycling programs
- Used racks require minimal storage space just flatten and recycle
- Manufactured from paperboard sourced from sustainable forests
- · Printed with soy and vegetable based inks
- Less weight equals reduced energy consumption and cost for shipping
- · Available Tips: Sterile OneTouch pipette tip range

Pipette Tip Packaging Options

TipStation – Multichannel Pipetting Platform

- Saves space: 192 tips per deck, 5 decks per stack (960 tips)
- Decks designed in 2 x 96 format to match microtiter plate formats
- Stable platform for loading tips
- Can be used with 8 or 12 channel pipettors
- Lid can be positioned to expose only 96 tips
- Available Tips: 10 μl LongReach and 200 μl Standardization

Platinum Reload System

- Saves space
- Less waste environmentally friendly
- Durable, reusable, open-style hinged racks
- · No special transfer device needed
- Fit other similar reload system racks
- Clear reload packaging = easy tip identification
- Available Tips: 10 μ l LongReach; 200 μ l Standardization; 300 μ l NX; and 1000 μ l XT (50-1250 μ l)

QuickRack Environmental Packaging

- Quickly loads 96 tips into empty racks
- Compatible with most manufacturers' racks
- Reduces waste
- Available Tips: 10 μl LongReach; 200 μl Standardization; 300 μl NX; and 1000 μl XT (50-1250 μl)

Gel Loading Tip Packaging

 Gel loading tip racks (each rack is a single 'pack' of 200 tips) are color coded by outside tip diameter.

White racks – Round (0.57 mm 0.D.) tips Yellow racks – Flat (0.37 mm 0.D.) tips

Blue racks – Flat (0.17 mm 0.D.) tips

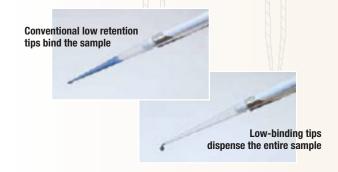
- MµltiFlex™ (1-200 µl) gel loading tips are available bulk (round) and racked (round and flat)
- MμltiFlex E (0.5-10 μl) gel loading tips are available racked (round and flat)
- MiniFlex (0.1-10 μl) gel loading tips are available racked (round and flat)

MµltiGuard™ Barrier Tips

- Ideal for PCR, DNA amplification and radioisotope handling
- Inert, hydrophobic barrier prevents pipettor contamination
- Over-pipetting will not contaminate valuable samples
- Universal fit on research-grade pipettors
- Filter contains no leachable additives
- Small micron pore sizes, <20 microns

MµltiGuard Barrier Tips effectively block aerosols without the risk of contaminating your sample with additives.

Visit www.sorbio.com to view studies where MultiGuard Barrier Tips prevent anthrax and radioactive contamination.


Also see how a cellulose additive contained in competitors' tips inhibits PCR.

LOW BINDING POLYMER TECHNOLOGY

- Creates hydrophobic surface to reduce surface tension
- Minimal sample binding
- Improves accuracy and precision
- No additives such as silicone
- No leaching and subsequent sample degradation

SEE THE DIFFERENCE!

Scientific tests demonstrate that low binding polymer technology binds less DNA and protein than conventional and low retention tips.

DNA Binding: The relative binding of DNA by several manufacturers' pipette tips (three conventional tips and three low retention tips) was measured by slowly pipetting 100 µl of ABl Big Dye® Terminator Ready Reaction Mix (Applied Biosystems), Tips were subsequently washed in 625 µl of ddH₂0 in a spectrophotometer sample tube and analyzed with a DU-70 spectrophotometer (Beckman-Coulter) at 260 nm wavelength.

Results: Low binding tips experience as much as a tenfold decrease in DNA binding compared to conventional tips and a fourfold decrease in bound DNA compared to the best low retention tips. Performance is not compromised after autoclaving (data not shown).

Protein Binding: The relative binding of protein by several manufacturers' pipette tips (three conventional tips and three low retention tips) was measured by pipetting 100 µl of 10 mg/µl bovine serum albumin (New England Biolabs, Beverly, MA). Tips were subsequently washed in 625 µl of ddH₂0 in a spectrophotometer sample tube and analyzed with a DU-70 spectrophotometer (Beckman-Coulter) at 280 nm wavelength.

Results: Low binding tips exhibit as much as a threefold decrease in protein binding compared to conventional and low retention tips and performance is not compromised after autoclaving (data not shown).

MµltiGuard[™] Barrier Tips

		Cat. No.	Vol. Range	Туре	Graduations	Packaging	Pack Type	Quantity
10 μΙ		22					Cell Rack	
µltra G		28200 28200T	0.1-10 μl 0.1-10 μl	Standard Low Binding	2, 10 µl 2, 10 µl	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
10 μΙ	10	-					Cell Rack	
LongReach		38000 38000T	0.1-10 μl 0.1-10 μl	Standard Low Binding	2, 5, 10 µl 2, 5, 10 µl	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
10 μΙ			-				Cell Rack	
E		15020 15020T	0.5-10 μl 0.5-10 μl	Standard Low Binding	No Graduations No Graduations	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
20 μΙ	i						Cell Rack	
		14210 14210T	1-20 µl 1-20 µl	Standard Low Binding	No Graduations No Graduations	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
100 μΙ							Cell Rack	
		36060 36060T	1-100 μl 1-100 μl	Standard Low Binding	No Graduations No Graduations	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
200 μΙ	i						Cell Rack	
		14220 14220T	1-200 µl 1-200 µl	Standard Low Binding	No Graduations No Graduations	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
200 μΙ		-					Cell Rack	
NX	W. Commonweal	30550 30550T	1-200 μl 1-200 μl	Standard Low Binding	10, 50, 100 μl 10, 50, 100 μl	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
200 μΙ		11					Cell Rack	
MultiGuard 3*	1000	17370-X 17370T-X	1-200 µl 1-200 µl	Standard Low Binding	10, 50, 100, 200 µl 10, 50, 100, 200 µl	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	inettors	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
300 μΙ	N.	Timo umquo	externada rerigiar ap	anowo otandardizano	in across a wide range of 20	μι, σο μι, του μι απά 200 μι ρ	Cell Rack	
XT	Vision II	30510-X 30510T-X	1-300 µl 1-300 µl	Standard Low Binding	10, 50,100, 200 µl 10, 50,100, 200 µl	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
1000 μΙ			- Ing				Standard Rack	
	-	14200 14200T	100-1000 µl 100-1000 µl	Standard Low Binding	No Graduations No Graduations	Sterile, 100 Tips/Rack Sterile, 100 Tips/Rack	Stalluaru nack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
1000 μΙ				+				
XT	E MIN			-			Hinged Rack	ii .
		34000	50-1250 μl	Standard	200, 500, 1000 µl	Sterile, 96 Tips/Rack		8 Racks/Pack, 5 Packs/Case

OneTouch Tips

A truly universal tip that fits virtually any pipettor – OneTouch tips provide an innovative, ergonomic and environmentally friendly liquid handling solution.

Innovative – Pipetting like you've never felt it

A revolutionary tip that is manufactured from two resins, OneTouch tips provide a soft color-coded top collar and a rigid, ultra-clear polypropylene body.

Ergonomic – Soft tip requires less pressure to create an optimal seal

Tips reduce the necessary sealing and reciprocal ejection force felt with traditional single resin polypropylene tips. Tips are excellent for multichannel pipettors, and reduce pipettor wear.

Environmentally Sensitive: e•dek[™] packaging

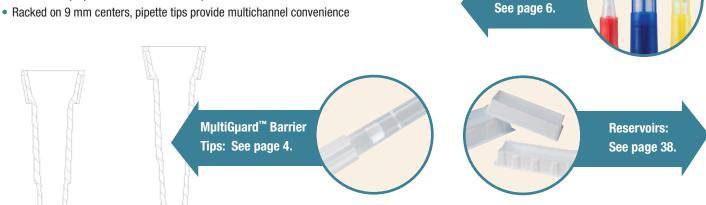
Sorenson BioScience introduces a true environmental solution, plastic-free racks. e•dek racks are made of paperboard sourced from sustainable forests and are printed with soy and vegetable based inks. Biodegradable racks are fully recyclable with existing paperboard recycling programs. Just flatten used racks and toss them into the recycling bin.

Packaging and Compatibility

- · Two types of packaging:
 - Traditional polypropylene racks
 - Environmentally friendly $e \, {}^{\scriptscriptstyle ullet}$ dek paperboard racks
- Three tips accommodate a wide range of research-grade pipettors:
 - 10 μl (1-20 μl), compatible with most popular 2 μl, 10 μl and 20 μl research-grade pipettors
 - 200 μl (1-330 μl), compatible with most popular 200-300 μl research-grade pipettors
 - 1000 μl (50-1250 μl), compatible with most popular 1000 μl research-grade pipettors

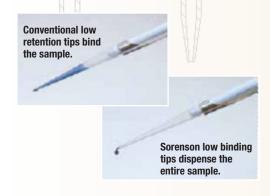
OneTouch-Compatible BenchTop Pipettor: See page 26.

OneTouch Tips


	Cat. No. Vol. Range Type Grad		Graduations	Packaging	Pack Type	Quantity	
10 µl Standard	10300 10310	1-20 µl 1-20 µl	Standard Standard	1 µl, 5 µl, 10 µl 1 µl, 5 µl, 10 µl	Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	10390	1-20 µl	Standard	1 µІ, 5 µІ, 10 µІ	Sterile, 96 Tips/Rack	e•dek	10 Racks/Pack, 5 Packs/Case
10 µl Barrier	10320	1-20 µl	Barrier	1 µl, 5 µl, 10 µl	Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case
	10400	1-20 µl	Barrier	1 µl, 5 µl, 10 µl	Sterile, 96 Tips/Rack	e•dek	10 Racks/Pack, 5 Packs/Case
200 µl Standard							
otanaan a	10330 10340	1-330 µl 1-330 µl	Standard Standard	10 µl, 50 µl, 100 µl 10 µl, 50 µl, 100 µl	Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	10410	1-330 µl	Standard	10 µl, 50 µl, 100 µl	Sterile, 96 Tips/Rack	e•dek	10 Racks/Pack, 5 Packs/Case
200 μl Barrier						Cell Rack	
	10350	1-330 µl	Barrier	10 µІ, 50 µІ, 100 µІ	Sterile, 96 Tips/Rack	-	10 Racks/Pack, 5 Packs/Case
	10420	1-330 µl	Barrier	10 µl, 50 µl, 100 µl	Sterile, 96 Tips/Rack	e•dek	10 Racks/Pack, 5 Packs/Case
1000 µl Standard	STORY DESIGNATION	or Alle					
otandard	10360 10370	50-1250 µl 50-1250 µl	Standard Standard	200 µl, 500 µl, 1000 µl 200 µl, 500 µl, 1000 µl	Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Hinged Rack	8 Racks/Pack, 5 Packs/Case 8 Racks/Pack, 5 Packs/Case
	10450	50-1250 μl	Standard	200 µl, 500 µl, 1000 µl	Sterile, 64 Tips/Rack	e•dek	12 Racks/Pack, 1 Pack/Case
1000 µl Barrier	e trainsanain	nor this same					
Dairiei	10380	50-1250 µl	Barrier	200 µІ, 500 µІ, 1000 µІ	Sterile, 96 Tips/Rack	Hinged Rack	8 Racks/Pack, 5 Packs/Case
	10460	50-1250 µl	Barrier	200 μl, 500 μl, 1000 μl	Sterile, 64 Tips/Rack	e•dek	12 Racks/Pack, 1 Pack/Case

Ultra-Micro and Standard Universal Fit Pipette Tips

Trust Sorenson brand pipette tips in your research. Tips are manufactured from the finest raw materials using precise production techniques that provide consistent quality performance. Primary products are made from virgin polymers and contain no recycled, reprocessed, or altered plastics.


- Universal fit on research grade pipettors
- · Accurate, precise and reliable
- Exceptional clarity
- · Certified free of RNase, DNase, Human DNA and pyrogens
- Extended length tips enable users to reach the bottom of tubes without contaminating pipettors
- Graduated tips provide visible reference points

LOW BINDING POLYMER TECHNOLOGY

- Creates hydrophobic surface to reduce surface tension
- Minimal sample binding
- Improves accuracy and precision
- No additives such as silicone
- No leaching and subsequent sample degradation

SEE THE DIFFERENCE!

Scientific tests demonstrate that low binding polymer technology binds less DNA and protein than conventional and low retention tips.

OneTouch Tips:

DNA Binding: The relative binding of DNA by several manufacturers' pipette tips (three conventional tips and three low retention tips) was measured by slowly pipetting 100 µl of ABl Big Dye® Terminator Ready Reaction Mix (Applied Biosystems). Tips were subsequently washed in 625 µl of ddH₂O in a spectrophotometer sample tube and analyzed with a DU-70 spectrophotometer (Beckman-Coulter) at 260 nm wavelength.

Results: Low binding tips experience as much as a tenfold decrease in DNA binding compared to conventional tips and a fourfold decrease in bound DNA compared to the best low retention tips. Performance is not compromised after autoclaving (data not shown).

Protein Binding: The relative binding of protein by several manufacturers' pipette tips (three conventional tips and three low retention tips) was measured by pipetting 100 µl of 10 mg/µl bovine serum albumin (New England Biolabs, Beverly, MA). Tips were subsequently washed in 625 µl of ddH₂0 in a spectrophotometer sample tube and analyzed with a DU-70 spectrophotometer (Beckman-Coulter) at 280 nm wavelength.

Results: Low binding tips exhibit as much as a threefold decrease in protein binding compared to conventional and low retention tips and performance is not compromised after autoclaving (data not shown).

Ultra-Micro Tips

	Cat. No.	Vol. Range	Туре	Color	Graduations	Packaging	Pack Type	Quantity
10 μl μltra G								
	23580	0.1-10 µl	Standard	Natural	2, 10 µl	Non-Sterile, Bulk	Bulk Pack	1000 Tips/Bag, 10 Bags/Case
	23580T	0.1-10 μl	Low Binding	Natural	2, 10 µl	Non-Sterile, Bulk	Str.	1000 Tips/Bag, 10 Bags/Case
	23560	0.1-10 μΙ	Standard	Natural	2, 10 μΙ	Non-Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case
	23560T 23570	0.1-10 μl 0.1-10 μl	Low Binding Standard	Natural Natural	2, 10 µl 2, 10 µl	Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	23570T	0.1-10 μl	Low Binding	Natural	2, 10 µl	Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case
	00.470	0.4.401	Ohamaland	Makaal	0.401	New Ober'lle Delevel	QuickRack	000 Time/Death F Deaths/0
	30470 30470T	0.1-10 μl 0.1-10 μl	Standard Low Binding	Natural Natural	2, 10 μl 2, 10 μl	Non-Sterile, Reload Non-Sterile, Reload	P. A.	960 Tips/Pack, 5 Packs/Case 960 Tips/Pack, 5 Packs/Case
10 μΙ	Par and							
LongReach	2						Bulk Pack	
	37650	0.1-10 μΙ	Standard	Natural	2, 5, 10 μΙ	Non-Sterile, Bulk	Duik Fack	1000 Tips/Bag, 10 Bags/Case
	37650T	0.1-10 μΙ	Low Binding	Natural	2, 5, 10 μΙ	Non-Sterile, Bulk	Day!	1000 Tips/Bag, 10 Bags/Case
	37640	0.1-10 µl	Standard	Natural	2, 5, 10 µl	Non-Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case
	37640T	0.1-10 μΙ	Low Binding	Natural	2, 5, 10 μΙ	Non-Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case
	37660 37660T	0.1-10 µl	Standard	Natural	2, 5, 10 μl 2, 5, 10 μl	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case
	3/0001	0.1-10 μΙ	Low Binding	Natural	Ζ, 5, 10 μι	Sterile, 96 Hps/hack		10 Racks/Pack, 5 Packs/Case
	27780	0.1-10 μΙ	Standard	Natural	2, 5, 10 μΙ	Non-Sterile	TipStation	960 Tips/Stack, 5 Stacks/Case
	27780T	0.1-10 µl	Low Binding	Natural	2, 5, 10 μl	Non-Sterile		960 Tips/Stack, 5 Stacks/Case
	27790 27790T	0.1-10 μl 0.1-10 μl	Standard Low Binding	Natural Natural	2, 5, 10 μl 2, 5, 10 μl	Sterile Sterile		960 Tips/Stack, 5 Stacks/Case 960 Tips/Stack, 5 Stacks/Case
	70500	0.1-10 µl	Standard	Natural	2 5 10 ul	Non-Sterile, 96 Tips/Deck	Platinum Reload	10 Decks/Pack, 4 Packs/Case
	70600	0.1-10 μl 0.1-10 μl	Low Binding	Natural	2, 5, 10 μl 2, 5, 10 μl	Non-Sterile, 96 Tips/Deck	E an	10 Decks/Pack, 4 Packs/Case
	70700	0.1-10 μΙ	Standard	Natural	2, 5, 10 µl	Non-Sterile, 96 Tips/Deck, Starter Kit		960 Tips/Case, 10 Empty Racks
	37820	0.1-10 µl	Standard	Natural	2, 5, 10 µl	Non-Sterile, Reload	QuickRack	960 Tips/Pack, 5 Packs/Case
	37820T	0.1-10 μl	Low Binding	Natural	2, 5, 10 µl	Non-Sterile, Reload	No.	960 Tips/Pack, 5 Packs/Case
10 μΙ	li i							
E	To be	1						
	13980	0.5-10 μΙ	Standard	Natural	No Graduations	Non-Sterile, Bulk	Bulk Pack	1000 Tips/Bag, 10 Bags/Case
	13980T	0.5-10 μΙ	Low Binding	Natural	No Graduations	Non-Sterile, Bulk	De la Company	1000 Tips/Bag, 10 Bags/Case
	22220	0.5-10 μl	Standard	Natural	No Graduations	Non-Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case
	22220T	0.5-10 µl	Low Binding	Natural	No Graduations	Non-Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case
	22210 22210T	0.5-10 μl 0.5-10 μl	Standard Low Binding	Natural Natural	No Graduations No Graduations	Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	222101	0.0 10 μι	LOW Dilluling	ivatural	140 Graduations	otomo, oo mpo/maok		10 Hackert ack, 51 acks/0436

Standard Tips

	Cat. No.	Vol. Range	Туре	Color	Graduations	Packaging	Pack Type	Quantity
200 μΙ							Bulk Pack	
	10470 10470T	1-200 μl 1-200 μl	Standard Low Binding	Natural Natural	No Graduations No Graduations	Non-Sterile, Bulk Non-Sterile, Bulk		1000 Tips/Bag, 10 Bags/Case 1000 Tips/Bag, 10 Bags/Case
	10500 15270T 10520 10520T	1-200 µl 1-200 µl 1-200 µl 1-200 µl	Standard Low Binding Standard Low Binding	Natural Natural Natural Natural	No Graduations No Graduations No Graduations No Graduations	Non-Sterile, 96 Tips/Rack Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	30450 30450T	1-200 µl 1-200 µl	Standard Low Binding	Natural Natural	No Graduations No Graduations	Non-Sterile, Reload Non-Sterile, Reload	QuickRack	960 Tips/Pack, 5 Packs/Case 960 Tips/Pack, 5 Packs/Case
	10590	1-200 µl	Standard	Yellow	No Graduations	Non-Sterile, Bulk	Bulk Pack	1000 Tips/Bag, 10 Bags/Case
	10620 10660	1-200 μl 1-200 μl	Standard Standard	Yellow Yellow	No Graduations No Graduations	Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	30460	1-200 µl	Standard	Yellow	No Graduations	Non-Sterile, Reload	QuickRack	960 Tips/Pack, 5Packs/Case
200 μΙ							Bulk Pack	
Standardization	15720 15720T	1-200 µl 1-200 µl	Standard Low Binding	Natural Natural	10, 50, 100 µl 10, 50, 100 µl	Non-Sterile, Bulk Non-Sterile, Bulk	DUIK FACK	1000 Tips/Bag, 10 Bags/Case 1000 Tips/Bag, 10 Bags/Case
	15660 15660T 15670 15670T	1-200 µl 1-200 µl 1-200 µl 1-200 µl	Standard Low Binding Standard Low Binding	Natural Natural Natural Natural	10, 50, 100 μl 10, 50, 100 μl 10, 50, 100 μl 10, 50, 100μl	Non-Sterile, 96 Tips/Rack Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	27760 27760T 27770 27770T	1-200 µl 1-200 µl 1-200 µl 1-200 µl	Standard Low Binding Standard Low Binding	Natural Natural Natural Natural	10, 50, 100 µl 10, 50, 100 µl 10, 50, 100 µl 10, 50, 100 µl	Non-Sterile Non-Sterile Sterile Sterile	TipStation	960 Tips/Stack, 5 Stacks/Case 960 Tips/Stack, 5 Stacks/Case 960 Tips/Stack, 5 Stacks/Case 960 Tips/Stack, 5 Stacks/Case
	70510 70610 70710	1-200 µl 1-200 µl 1-200 µl	Standard Low Binding Standard	Natural Natural Natural	10, 50, 100 μl 10, 50, 100 μl 10, 50, 100 μl	Non-Sterile, 96 Tips/Deck Non-Sterile, 96 Tips/Deck Non-Sterile, 96 Tips/Deck, Starter Kit	Platinum Reload	10 Decks/Pack, 4 Packs/Case 10 Decks/Pack, 4 Packs/Case 960 Tips/Case, 10 Empty Racks
	30430 30430T	1-200 μl 1-200 μl	Standard Low Binding	Natural Natural	10, 50, 100 µl 10, 50, 100 µl	Non-Sterile, Reload Non-Sterile, Reload	QuickRack	960 Tips/Pack, 5 Packs/Case 960 Tips/Pack, 5 Packs/Case
	15730	1-200 µl	Standard	Yellow	10, 50, 100 μΙ	Non-Sterile, Bulk	Bulk Pack	1000 Tips/Bag, 10 Bags/Case
	15360 15370	1-200 µl 1-200 µl	Standard Standard	Yellow Yellow	10, 50, 100 µl 10, 50, 100 µl	Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	27720 27730	1-200 µl 1-200 µl	Standard Standard	Yellow Yellow	10, 50, 100 µl 10, 50, 100 µl	Non-Sterile Sterile	TipStation	960 Tips/Stack, 5 Stacks/Case 960 Tips/Stack, 5 Stacks/Case
	70520 70720	1-200 µl 1-200 µl	Standard Standard	Yellow Yellow	10, 50, 100 µl 10, 50, 100 µl	Non-Sterile, 96 Tips/Deck Non-Sterile, 96 Tips/Deck, Starter Kit	Platinum Reload	10 Decks/Pack, 4 Packs/Case 960 Tips/Case, 10 Empty Racks
	30440	1-200 µl	Standard	Yellow	10, 50, 100 μΙ	Non-Sterile, Reload	QuickRack	960 Tips/Pack, 5 Packs/Case


Standard Tips

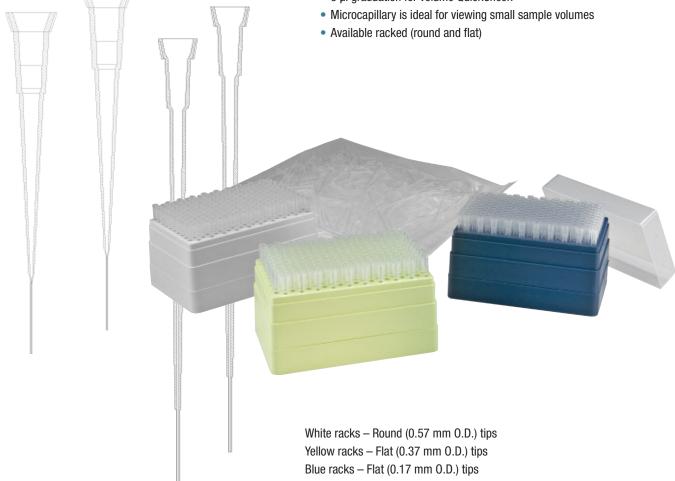
	Cat. No.	Vol. Range	Туре	Color	Graduations	Packaging	Pack Type	Quantity
300 μl							Bulk Pack	
NX	31770 31770T	1-300 μl 1-300 μl	Standard Low Binding	Natural Natural	10, 50, 100 μl 10, 50, 100 μl	Non-Sterile, Bulk Non-Sterile, Bulk	DUIK FACK	1000 Tips/Bag, 10 Bags/Case 1000 Tips/Bag, 10 Bags/Case
	31780 31780T 31790 31790T	1-300 µl 1-300 µl 1-300 µl 1-300 µl	Standard Low Binding Standard Low Binding	Natural Natural Natural Natural	10, 50, 100 µl 10, 50, 100 µl 10, 50, 100 µl 10, 50, 100 µl	Non-Sterile, 96 Tips/Rack Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	70530 70620 70730	1-300 µl 1-300 µl 1-300 µl	Standard Low Binding Standard	Natural Natural Natural	10, 50, 100 µl 10, 50, 100 µl 10, 50, 100 µl	Non-Sterile, 96 Tips/Deck Non-Sterile, 96 Tips/Deck Non-Sterile, 96 Tips/Deck, Starter Kit	Platinum Reload	10 Decks/Pack, 4 Packs/Case 10 Decks/Pack, 4 Packs/Case 960 Tips/Case, 10 Empty Rack
300 µI								
ΧT	30800 30800T	1-300 µl 1-300 µl	Standard Low Binding	Natural Natural	10, 50, 100, 200 μl 10, 50, 100, 200 μl	Non-Sterile, Bulk Non-Sterile, Bulk	Bulk Pack	1000 Tips/Bag, 10 Bags/Case 1000 Tips/Bag, 10 Bags/Case
	30920 30920T 30930 30930T	1-300 µl 1-300 µl 1-300 µl 1-300 µl	Standard Low Binding Standard Low Binding	Natural Natural Natural Natural	10, 50, 100, 200 µl 10, 50, 100, 200 µl 10, 50, 100, 200 µl 10, 50, 100, 200 µl	Non-Sterile, 96 Tips/Rack Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack	Cell Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
1000 µl*								
	10200 10200T 10230 10230T	100-1000 μl 100-1000 μl 100-1000 μl 100-1000 μl	Standard Low Binding Standard Low Binding	Natural Natural Natural Natural	No Graduations No Graduations No Graduations No Graduations	Non-Sterile, 100 Tips/Rack Non-Sterile, 100 Tips/Rack Sterile, 100 Tips/Rack Sterile, 100 Tips/Rack	Standard Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
	10190 10190T 10040	100-1000 μl 100-1000 μl 100-1000 μl	Standard Low Binding Standard	Natural Natural Blue	No Graduations No Graduations No Graduations	Non-Sterile, Bulk Non-Sterile, Bulk Non-Sterile, Bulk	Bulk Pack	1000 Tips/Bag, 10 Bags/Case 1000 Tips/Bag, 10 Bags/Case 1000 Tips/Bag, 10 Bags/Case
	10080 10130	100-1000 μl 100-1000 μl	Standard Standard	Blue Blue	No Graduations No Graduations	Non-Sterile, 100 Tips/Rack Sterile, 100 Tips/Rack	Standard Rack	10 Racks/Pack, 5 Packs/Case 10 Racks/Pack, 5 Packs/Case
1000 μl KT							Bulk Pack	
	31610	50-1250 μl	Standard	Natural	200, 500,1000 μl	Non-Sterile, Bulk	300	768 Tips/Bag, 10 Bags/Case
							Hinged Rack	
	34750 34760	50-1250 μl 50-1250 μl	Standard Standard	Natural Natural	200, 500,1000 μl 200, 500,1000 μl	Non-Sterile, 96 Tips/Rack Sterile, 96 Tips/Rack		8 Racks/Pack, 5 Packs/Case 8 Racks/Pack, 5 Packs/Case
	70540 70740	50-1250 μl 50-1250 μl	Standard Standard	Natural Natural	200, 500,1000 μl 200, 500,1000 μl	Non-Sterile, 96 Tips/Deck Non-Sterile, 96 Tips/Deck, Starter Kit	Platinum Reload	8 Decks/Pack, 4 Packs/Case 768 Tips/Case, 8 Empty Racks
	34770	50-1250 μl	Standard	Natural	200, 500,1000 µl	Non-Sterile, Reload	QuickRack	768 Tips/Pack, 5 Packs/Case

^{*1000} µl tip racks are not configured on 9 mm centers; 1000 µl XT tip racks ARE configured on 9 mm centers and accommodate multichannel pipetting.

Gel Loading Tips

Sorenson is *THE* trusted manufacturer of gel loading tips. Sorenson's MultiFlex, $^{\text{M}}$ MultiFlex E and MiniFlex gel loading tips have become the industry standard and have been used globally in genetic sequencing studies.

MμltiFlex Tips (1-200 μl):


- Universal fit on research-grade pipettors
- 83 mm length for access to bottom of narrow vessels and gel wells
- 5 µl graduation for volume QuickCheck
- · Available in bulk (round) and racked (round and flat)

MiniFlex Tips (0.1-10 µl):

- Universal fit on ultra-micro pipettors
- 45 mm length for access to bottom of narrow vessels and gel wells.
- 2 μl graduation for volume QuickCheck
- Available racked (round and flat)

MμltiFlex E Tips (0.5-10 μl):

- Fit Eppendorf and ultra-micro pipettors
- 5 µl graduation for volume QuickCheck

Gel Loading Tips

	Cat. No.	Vol. Range	Orifice Shape	Orifice O.D.*	Graduations	Packaging	Pack Type**	Quantity
10 µl MiniFlex	15100 15110	0.1-10 µl 0.1-10 µl	Round Round	0.57 mm 0.57 mm	2 μl 2 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
	15120 15130	0.1-10 µl 0.1-10 µl	Flat Flat	0.37 mm 0.37 mm	2 μl 2 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
	17350 17360	0.1-10 μl 0.1-10 μl	Flat Flat	0.17 mm 0.17 mm	2 µI 2 µI	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
10 µl MµltiFlex E	13920 13930	0.5-10 µl 0.5-10 µl	Round Round	0.57 mm 0.57 mm	5 μl 5 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
	13890 13900	0.5-10 µl 0.5-10 µl	Flat Flat	0.37 mm 0.37 mm	5 μl 5 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
	17330 17340	0.5-10 µl 0.5-10 µl	Flat Flat	0.17 mm 0.17 mm	5 μl 5 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
200 µl MµltiFlex	28480	1-200 µl	Round	0.57 mm	5 µІ	Bulk, Non-Sterile	Bulk Pack	1000 Tips/Bag, 10 Bags/Case
	13790 13810	1-200 µl 1-200 µl	Round Round	0.57 mm 0.57 mm	5 μl 5 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
	13760 13770	1-200 µl 1-200 µl	Flat Flat	0.37 mm 0.37 mm	5 μl 5 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case
	17310 17320	1-200 µl 1-200 µl	Flat Flat	0.17 mm 0.17 mm	5 μl 5 μl	Racked, Non-Sterile Racked, Sterile	Flex Rack	200 Tips/Pack, 4 Packs/Case 200 Tips/Pack, 4 Packs/Case

^{*.37} mm 0.D. tips are for use with 0.4 mm gels; .17 mm 0.D. tips are for use with 0.2 mm gels **Gel Loading Tip Packaging: an individual pack is a tip rack of 200 tips

												CR Inmu		
Tip Compatibility						ULTR		RO AND	STANDA	RD TIP	S			
Chart	Single/ Multichannel Compatibility*	10 µl µltra G	10 µI Е	10 µl LongReach	10 µl OneTouch	200 µl	200 µl Standardization	200 µl OneTouch	300 µl NX	300 µl XT	1000 μΙ⁺	1000 µl XT	1000 µl OneTouch	
BioHit														
mLine 3 μl	SC													
mLine 10 μl	SC/MC													
mLine 20 μl	SC													
mLine 100 μl	SC/MC													
mLine 200 μl	SC													
mLine 300 μl	MC													
mLine 1000 μl	SC													
ProLine® 3 μl	SC													
ProLine 10 μl	SC/MC													
ProLine 20 μl	SC													
ProLine 100 μl	SC/MC													
ProLine 200 μl	SC													
ProLine 300 µl	MC													
ProLine 1000 µl	SC													
ProLine Mechanical 2.5 µl	SC													
ProLine Mechanical 50 µl	MC													
ProLine Mechanical 300 µl	MC													
eLine Advanced Electronic 10 µl	SC/MC													
eLine Advanced Electronic 120 µl	SC/MC													
eLine Advanced Electronic 300 µl	SC/MC													
eLine Advanced Electronic 1000 µl	SC													
ePet Electronic 10 μl	SC/MC													
ePet Electronic 100 μl	SC													
ePet Electronic 100 μl	MC													
ePet Electronic 250 μl	MC											_		
ePet Electronic 1000 μl	SC			_										
ProLine Electronic 10 μl	SC					_	_	_	_	_				
ProLine Electronic 100 μl	SC/MC					_	-	-	-					
ProLine Electronic 250 μl	SC							-	-					
ProLine Electronic 250 µl	MC													
ProLine Electronic 1000 μl	SC													
Eppendorf Reference 2.5 μI	SC													
Reference 10 µl	SC													_
Reference 20 µl	SC			-	-									_
Reference 100 µl	SC													_
Reference 200 μl	SC													_
Reference 1000 µl	SC						_	_						
Research 2.5 µl	SC													_
Research 10 µl	SC													_
Research 10 µl	MC			_										
Research 20 µl	SC		_		_									
Research 100 µl	SC													_
Research 100 µl	MC													
Research 200 µl	SC													
Research 300 µl	MC													
Research 1000 µl	SC													_
Research Pro10 µl	SC/MC													
Research Pro 300 µl	SC													
										_				

^{*}SC = Compatible with single channel pipettors only; MC = compatible with multichannel only; SC/MC = Compatible with either single or multichannel. † Tips compatible with single channel only.

100 pt 1							BARRI	ER TIP	S						GEL L	. O A D I N (TIPS
			등	_				Ų	rd 3	_	L		E	_	_	Ē	÷
	д е д С	븰	µl ngRea	Touc	=	=	Ξ.	<u>1</u>	ItiGua	Jul Touc	Z II	±I⊒ 00	<u>1</u>	O µl	Flex.	E E	ITE E
	유ే	10	흔후	9 5	20	10	200	700	₩ Mu	9.00	300	Ę	5	0 TO	5 <u>E</u>	요를	30 Ma
					-	_					_						
						-											
					-	_					_						
				_													
	-	-	-	-	-	_			-		_						
					_				_								
					-	-											
												-					
										_							

Tin Commatibility											7	CR Inhibite	•
Tip Compatibility						ULTI	RA-MIC	RO AND	STANDA	ARD TIP	S		
Chart	Ł						<u></u>						
(continued)	Single/ Multichannel Compatibility*	10 µl µltra G	10 µl E	10 µl LongReach	10 µl OneTouch	200 µl	200 μl Standardization	200 µl OneTouch	300 µl NX	300 µl XT	1000 µI†	1000 µI XT	1000 µl OneTouch
Eppendorf (continued)	MC												
Research Pro 300 µl													
Research Pro 1000 µl Research Plus 10 µl	SC SC												
Research Plus 10 µl	MC		-										
<u> </u>	SC	-	-	-									
Research Plus 200 µl Research Plus 300 µl	MC						_	-	-				
Research Plus 1000 µl	SC							_					
Gilson	30										_	_	-
Pipetman 10 μl	SC												
Pipetman 20 μl	SC												
Pipetman 100 µl	SC												
Pipetman 200 μl	SC												
Pipetman 1000 μl	SC												
Pipetman Neo 2 μl	SC												
Pipetman Neo 10 μl	SC												
Pipetman Neo 100 μl	SC												
Pipetman Neo 200 µl	SC												
Pipetman Neo 1000 µl	SC												
Pipetman Ultra 100 µl	SC												
Labnet													
Labpette 2 µl	SC												
Labpette 10 μl	SC/MC												
Labpette 20 μl	SC												
Labpette 50 μl	MC												
Labpette 100 μl	SC												
Labpette 200 μl	SC												
Labpette 200 μl	MC												
Labpette 300 μl	MC												
Labpette 1000 μl	SC												
Rainin	00	_		_	_								
Pipet-Plus Latch Mode 2 μl	SC												
Pipet-Plus Latch Mode 10 µl	SC												
Pipet-Plus Latch Mode 20 µl	SC												
Pipet-Plus Latch Mode100 μl	SC	_											
EDP 10 µl	SC					_	_						
EDP 20 µl	SC												
EDP 25 μl	SC					-	-			-			
EDP 100 μl	SC SC						-	-		-			
EDP 200 μl	SC							-					
EDP 250 μl	SC							-					
EDP 1000 μl Socorex	ას												
Acura 2 µl	SC												
Acura 10 µl	SC/MC												
Acura 20 µl	SC				_								
Acura 50 µl	SC/MC												
Acura 100 µl	SC												
Acura 200 µl	SC/MC												
Acura 1000 μl	SC												

^{*}SC = Compatible with single channel pipettors only; MC = compatible with multichannel only; SC/MC = Compatible with either single or multichannel.
† Tips compatible with single channel only.

						BARRI	ER TIP	S						GEL	LOADINO	TIPS
		10 µl LongReach	등				×	200 µl MultiGuard 3	등	Þ	±_	×	_ 5	±×	10 µl MultiFlex E†	±×
10 µl µltra G	10 µl E	rul Re	10 µl OneTouch	20 µl	100 µІ	200 µI	200 µI NX	ultigu	200 µl OneTouch	300 µI ХТ	1000 µI†	1000 µI XT	1000 µl One Touch	10 µl MiniFlex†	重	200 µl MultiFlex†
무료	9	23	59	20	9	20	20	2 <u>2</u>	0 2 0	30	9	9	5.9	2 ≥	5 E	Z <u>≅</u>
																•
										-						
																-
					-			_								_
-																
								-	-	-						
•																
	•							_								
								-								
																-
	_													_		
								•								

SAFESEAL Microcentrifuge Tubes

Clearly the strongest tube, SafeSeal Microcentrifuge Tubes incorporate superior clarity with phenomenal strength.

- Superior clarity
- RCF rating of 24,000 x g
- Temperature rating from -80°C to +121°C
- Fit all standard rotors
- Autoclavable
- WILL NOT POP OPEN DURING BOILING OR FREEZING

Glass-like clarity allows easy viewing of sample and pellets. Ideal for high-speed centrifugation, proprietary homopolymer polypropylene tubes are rated up to $24,000 \times g$. Trust SafeSeal microcentrifuge tubes with your most valuable samples. A positive seal design allows repeated cap closures that will not pop during boiling. All tubes feature external graduation marks and frosted writing surfaces. Available in natural and five additional colors. Side gated tubes offer a clearer pellet view and increased strength over traditional style tubes.

SAFESEAL Microcentrifuge Tubes

	Cat. No.	Color	Packaging	Quantity
0.65 ml SAFESEAL	11160	Natural	Non-Sterile, Bulk Pack (Box)	1,000 Tubes/Bag, 10 Packs/Case
Microcentrifuge Tubes	11150	Natural	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
	11120	Red	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
	11060	Blue	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
	11080	Green	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
	11190	Yellow	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
	11170	Purple	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
	11210	Rainbow Pack*	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
	*Rainbow pack	consists of 200 tubes each of red,	blue, green, yellow and purple.	
1.7 ml SAFESEAL Microcentrifuge Tubes	11500	Natural	Non-Sterile, Bulk Pack (Box)	500 Tubes/Bag, 10 Packs/Case
microcentinuge lubes	11510	Natural Natural	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
	11490	Red	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
	11430	Blue	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
	11450	Green	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
	11560	Yellow	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
	11540	Purple	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
	11590	Rainbow Pack*	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
	*Rainbow pack	consists of 100 tubes each of red,	blue, green, yellow and purple.	
2.0 ml SAFESEAL Microcentrifuge Tubes	12030	Natural	Non-Sterile, Bulk Pack (Box)	400 Tubes/Bag, 10 Packs/Case
	12000	Natural	Non-Sterile, Bulk Bag	400 Tubes/Bag, 10 Bags/Case
	11980	Red	Non-Sterile, Bulk Bag	400 Tubes/Bag, 10 Bags/Case
	11920	Blue	Non-Sterile, Bulk Bag	400 Tubes/Bag, 10 Bags/Case
1 3	11940	Green	Non-Sterile, Bulk Bag	400 Tubes/Bag, 10 Bags/Case
	12040	Yellow	Non-Sterile, Bulk Bag	400 Tubes/Bag, 10 Bags/Case
	12020	Purple	Non-Sterile, Bulk Bag	400 Tubes/Bag, 10 Bags/Case
	12060	Rainbow Pack*	Non-Sterile, Bulk Bag	400 Tubes/Bag, 10 Bags/Case
	*Rainbow pack	consists of 80 tubes each of red, b	olue, green, yellow and purple.	

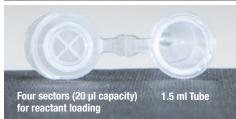
Low Binding Microcentrifuge Tubes

- RCF rating of 24,000 x g
- Temperature rating from -80°C to +121°C
- Low protein binding, ideal for Proteomics
- Non-reactive
- . Will not pop during boiling or freezing
- Complete sample recovery
- Autoclavable

	Cat. No.	Color	Packaging	Quantity
0.65 ml Low Binding Microcentrifuge Tubes	11300	Natural	Non-Sterile, Pack Box	500 Tubes/Pack, 10 Packs/Case
1.7 ml Low Binding Microcentrifuge Tubes	39640T	Natural	Non-Sterile, Pack Box	250 Tubes/Pack, 10 Packs/Case
2.0 ml Low Binding Microcentrifuge Tubes	12160	Natural	Non-Sterile, Pack Box	200 Tubes/Pack, 10 Packs/Case

Dolphin Microcentrifuge Tubes

20


- Ideal design for pelletizing samples
- RCF rating of 15,000 x g
- Temperature rating from -80°C to +121°C
- . Will not pop during boiling or freezing
- Fit all standard rotors
- Autoclavable

	Cat. No.	Color	Packaging	Quantity
2.0 ml Dolphin Microcentrifuge Tubes	16140	Natural	Non-Sterile, Bulk	1,000 Tubes/Bag, 5 Bags/Case

TabTop Microcentrifuge Tubes

Vertical tab eases handling of tubes in rotors, racks, heat blocks and baths. Hazardous aerosols are vented out the back of the tube and away from the researcher by pressing the levered TabTop. 0.5 ml tubes feature two sectors (15 μ l capacity) and 1.5 ml tubes feature four sectors (20 μ l capacity) for reactant loading prior to centrifugation.

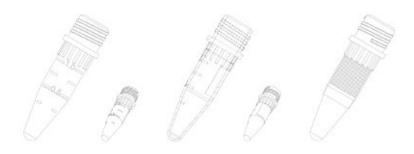
- RCF rating of 22,000 x g
- Temperature rating from -80°C to +121°C
- . Will not pop during boiling or freezing
- Autoclavable

		Cat. No.	Color	Packaging	Quantity
0.5 ml TabTop Microcentrifuge Tubes		16890	Natural	Non-Sterile, Bulk	1,000 Tubes/Bag, 10 Bags/Case
1.5 ml TabTop	0	16130	Natural	Non-Sterile, Bulk	500 Tubes/Bag, 10 Bags/Case
Microcentrifuge Tubes		16490	Red	Non-Sterile, Bulk	500 Tubes/Bag, 10 Bags/Case
14200		16470	Blue	Non-Sterile, Bulk	500 Tubes/Bag, 10 Bags/Case
		16480	Green	Non-Sterile, Bulk	500 Tubes/Bag, 10 Bags/Case
		16510	Yellow	Non-Sterile, Bulk	500 Tubes/Bag, 10 Bags/Case
		16500	Purple	Non-Sterile, Bulk	500 Tubes/Bag, 10 Bags/Case

µltra Racks

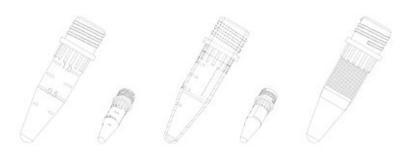
- Supports up to 48 tubes in an alpha-numeric configuration
- Non-skid rubber feet hold the rack in place
- Manufactured from 100% recycled polypropylene

	Cat. No.	Fits Tube Size	Capacity	Quantity
µltra Rack Microcentrifuge Tube and Vial Racks	15170	0.5 ml, 0.65 ml	48 Tubes	6 Racks/Case
	15190	1.5 ml, 1.7 ml	48 Tubes	6 Racks/Case

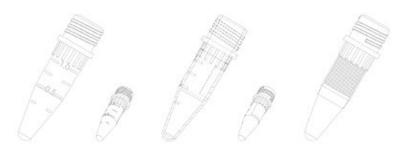


- Superior clarity.
- RCF rating of 17,000 x g
- Temperature rating from -80°C to + 121°C
- Two full turns of the cap create a reliable seal
- Autoclavable
- Fit all standard rotors
- Ethylene/propylene O-ring in cap for complete sealing
- Taller caps for easier handling

	Cat. No.	Cap Color	Packaging	Quantity
0.65 ml TwistTop Vial, Skirted	15530	N/A (Caps Not Included)	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case
	12330 12400	Natural Natural	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12370 12440	Red Red	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12350 12420	Blue Blue	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12360 12430	Green Green	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12380 12450	Yellow Yellow	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12340 12410	White White	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12390	Rainbow Pack*	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case


*200 caps of each color are bagged in each case separately.

	Cat. No.	Cap Color	Packaging	Quantity
1.7 ml TwistTop Vial, Skirted	15570	N/A (Caps Not Included)	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case
	12470 12540	Natural Natural	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12510 12580	Red Red	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12490 12560	Blue Blue	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12500 12570	Green Green	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12520 12590	Yellow Yellow	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12480 12550	White White	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12530	Rainbow Pack*	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case
1.7 ml TwistTop Vial, Conical	15590	N/A (Caps Not Included)	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case
	12610 12680	Natural Natural	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12650 12880	Red Red	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12630 12700	Blue Blue	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12640 12710	Green Green	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12660 12890	Yellow Yellow	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12620 12690	White White	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12670	Rainbow Pack*	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case


^{*200} caps of each color are bagged in each case separately.

	Cat. No.	Cap Color	Packaging	Quantity
2.0 ml TwistTop Vial, Skirted	15610	N/A (Caps Not Included)	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case
	12910 12980	Natural Natural	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12950 13020	Red Red	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12930 13000	Blue Blue	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12940 13010	Green Green	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12960 13030	Yellow Yellow	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12920 12990	○ White White	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	12970	Rainbow Pack*	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case
2.0 ml TwistTop Vial, Conical	15630	N/A (Caps Not Included)	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case
	13050 13120	Natural Natural	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	13090 13160	Red Red	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	13070 13140	Blue Blue	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	13080 13150	Green Green	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	13100 13170	Yellow Yellow	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	13060 13130	White White	Non-Sterile, Bulk Pre-Sterilized, Bulk	500 Vials/Bag, 2 Bags/Case 50 Vials/Bag, 10 Bags/Case
	13110	Rainbow Pack*	Non-Sterile, Bulk	500 Vials/Bag, 2 Bags/Case

^{*200} caps of each color are bagged in each case separately.

	Cat. No.	Cap Color	Packaging	Quantity
TwistTop Vial Caps	15490	Natural	Non-Sterile, Bulk	500 Caps/Bag, 2 Bags/Case
	15410	Red	Non-Sterile, Bulk	500 Caps/Bag, 2 Bags/Case
	15470	Blue	Non-Sterile, Bulk	500 Caps/Bag, 2 Bags/Case
	15460	Green	Non-Sterile, Bulk	500 Caps/Bag, 2 Bags/Case
	15400	Yellow	Non-Sterile, Bulk	500 Caps/Bag, 2 Bags/Case
	15480	White	Non-Sterile, Bulk	500 Caps/Bag, 2 Bags/Case
	15510	Rainbow Pack*	Non-Sterile, Bulk	200 Caps/Bag, 5 Bags/Case

^{*200} caps of each color are bagged in each case separately.

µltra Racks

	Cat. No.	Fits Vial Size	Capacity	Quantity
µltra Rack Microcentrifuge Tube and Vial Racks	15170	0.5 ml, 0.65 ml	48 Vials	6 Racks/Case
	15190	1.5 ml, 1.7 ml	48 Vials	6 Racks/Case

BenchTop Pipettor

Accelerate Liquid Transfers with the 96/384 BenchTop Pipettor

- Cell culture
- Plate replication
- Plate reformatting
- Adding reagents/compounds
- Multi-step dispensing
- . Mixing with variable volumes and cycles
- Increase productivity
- 250 μl dispensing precision: <2% at 25-250 μl; <10% at 5-20 μl
- 250 μl dispensing accuracy: ±4% at 25-250 μl; ±6% at 5-20 μl
- 20 μl dispensing precision: <3% @ 5-20 μl; <5% @ 1-5 μl
- 20 μl dispensing accuracy: ± 3% @ 5-20 μl; ± 5% @ 1-5 μl

Now available in two volume ranges: 20 µl (1-20 µl) and 250 µl (5-250 µl)

	Cat. No.	Description	volume	Quantity
	73990	20 μl BenchTop Pipettor	1-20 μΙ	1 Unit
	74000	20 μl BenchTop Pipettor in hard shell travel case	1-20 μΙ	1 Unit
	73960	250 µl BenchTop Pipettor	5-250 μl	1 Unit
	73970	250 μl BenchTop Pipettor in hard shell travel case	5-250 µl	1 Unit

Related Products

OneTouch Tips

The BenchTop Pipettor has been designed for use with Sorenson pipette tips. Our unique tips are designed to create an ergonomic, leak-proof seal. Sealing across 96 tips has never been easier than with the BenchTop Pipettor. Compatible Sorenson pipette tips include both OneTouch Tips and the new single resin 250 µl BenchTop Pipette Tip.

		Cat. No.	Description	Quantity
10 µl OneTouch Tips For use with the 20 µl BenchTop Pipettor	10300	OneTouch Non-Sterile, 10 µl Pipette Tip	960 Tips/Pack, 5 Packs/Case	
	10310	OneTouch Sterile, 10 µl Pipette Tip	960 Tips/Pack, 5 Packs/Case	
	10320	OneTouch Sterile, Barrier, 10 µl Pipette Tip	960 Tips/Pack, 5 Packs/Case	
200 μl OneTouch Tips For use with the 250 μl	10330	OneTouch Non-Sterile, 200 µl Pipette Tip	960 Tips/Pack, 5 Packs/Case	
BenchTop Pipettor		10340	OneTouch Sterile, 200 µl Pipette Tip	960 Tips/Pack, 5 Packs/Case
		10350	OneTouch Sterile, Barrier, 200 µl Pipette Tip	960 Tips/Pack, 5 Packs/Case
Low Binding 250 μl BenchTop Tips		73750T	250 μl BenchTop Pipette Tip, Low Binding	960 Tips/Pack, 5 Packs/Case
For use with the 250 µl BenchTop Pipettor		73760T	250 μl BenchTop Pipette Tip, Sterile, Low Binding	960 Tips/Pack, 5 Packs/Case
Ì		73770T	250 μl BenchTop Pipette Tip, Sterile, Barrier, Low Binding	960 Tips/Pack, 5 Packs/Case

Disposable HTS Reagent Reservoirs and Reservoir Holder

HTS Reagent Reservoirs are designed for use in high throughput screening and are made of FDA grade polystyrene. All HTS Reagent Reservoirs are sterile and individually wrapped. The re-usable Reservoir Holder is on an SBS Footprint and is designed to lock reservoirs steadily and securely in place for use with the BenchTop Pipettor.

BenchTop Indexing Device

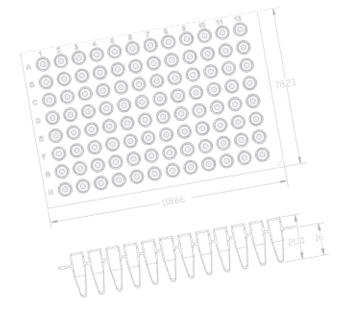
The BenchTop Indexing Device adapts the BenchTop Pipettor for use with 384-well plates.

	Cat. No.	Description	Quantity
For use with both the 20 µl and 250 µl BenchTop Pipettors	73980	BenchTop Indexing Device	1 Unit

µltraAMP™ PCR Products

ultra**Amp**".

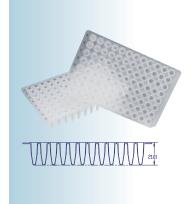
ultraAMP PCR Products


28

Sorenson BioScience, Inc. manufactures a comprehensive line for all PCR applications. From low-throughput applications requiring tubes to high-throughput applications involving 384-well plates, Sorenson offers high-quality solutions.

Thin wall 0.2 ml tubes, 0.2 ml μ ltraStrips, and .65 ml μ ltraTubes maximize PCR accuracy and reduce cycle times by providing uniform, rapid thermal transfer. All tubes fit most 0.2 ml and 0.5 ml thermal cycler blocks.

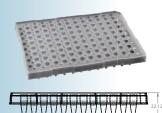
Bold-printed PCR plates fit leading thermal cyclers, DNA sequencing/detection instruments, and Real-Time PCR instruments. Precision-designed molds and tightly controlled processes create high quality plates with minimal warp before and after thermal cycling. Tight manufacturing tolerances and SBS standard dimensions make Sorenson BioScience PCR plates ideal for automated processes.


Trust Sorenson BioScience PCR plates with your most valuable samples. State-of-the-art instruments check every well of every plate for molding irregularities that can compromise PCR performance. In addition, all products are certified RNase/DNase-Free, Human DNA/PCR Inhibitor-Free, and non-pyrogenic.

µltraAMP™ PCR Plates

- Fits most popular thermal cyclers
- Slightly raised rims around wells for maximum sealing surface
- Easily cut

Cat. No.	Description	Pla	te Color	Packaging
26190	0.2 ml Rigid 96-Well µltra Plate	\bigcirc	Natural	25 Plates/Pack, 4 Packs/Case
21970	0.2 ml Rigid 96-Well µltra Plate	0	Natural	25 Plates/Pack, 1 Pack/Case
21980	0.2 ml Rigid 96-Well µltra Plate	0	Red	25 Plates/Pack, 1 Pack/Case
21990	0.2 ml Rigid 96-Well µltra Plate	0	Blue	25 Plates/Pack, 1 Pack/Case
22000	0.2 ml Rigid 96-Well µltra Plate	0	Green	25 Plates/Pack, 1 Pack/Case
22010	0.2 ml Rigid 96-Well µltra Plate	0	Yellow	25 Plates/Pack, 1 Pack/Case
22170	0.2 ml Rigid 96-Well µltra Plate	0	Purple	25 Plates/Pack, 1 Pack/Case
37860	0.2 ml Rigid 96-Well µltra Plate	•	Black	25 Plates/Pack, 1 Pack/Case
37870	0.2 ml Rigid 96-Well µltra Plate	0	White	25 Plates/Pack, 1 Pack/Case



- Optimized for Applied Biosystem's fast PCR systems
- PCR results in 25 minutes when used with the 9800
- Real-time PCR results in 40 minutes when used with the 7500
- Low profile and thin-wall design reduce cycle times
- · Ultra-clear wells produce optimal signal intensity
- Fits most popular thermal cyclers
- 100 µl working volume

Cat. No.	Description	Plate Color	Packaging
38900	96-Well Fast Plate	Natural	25 Plates/Pack, 4 Packs/Case
38800	96-Well Fast Plate	O Natural	25 Plates/Pack, 1 Pack/Case
30350	96-Well Fast Plate	O White	25 Plates/Pack, 1 Pack/Case

Semi-Skirt96 Raised Rim PCR Plate

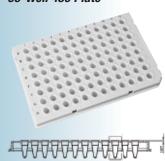
- Real-time PCR compatible
- · Raised rim perimeter for aligning purification plates
- · Skirt allows robotic handling and sample labeling
- Optional bar coding available

Cat. No.	Description	Plate Color	Packaging
74370	0.2 ml 96-Well Semi-Skirt Plate	Natural	25 Plates/Pack, 4 Packs/Case
74310	0.2 ml 96-Well Semi-Skirt Plate	Natural	25 Plates/Pack, 1 Pack/Case
74330	0.2 ml 96-Well Semi-Skirt Plate	Red	25 Plates/Pack, 1 Pack/Case
74350	0.2 ml 96-Well Semi-Skirt Plate	Blue	25 Plates/Pack, 1 Pack/Case
74320	0.2 ml 96-Well Semi-Skirt Plate	Green	25 Plates/Pack, 1 Pack/Case
74340	0.2 ml 96-Well Semi-Skirt Plate	Yellow	25 Plates/Pack, 1 Pack/Case
74360	0.2 ml 96-Well Semi-Skirt Plate	Purple	25 Plates/Pack, 1 Pack/Case
74380	0.2 ml 96-Well Semi-Skirt Plate	Black	25 Plates/Pack, 1 Pack/Case
74390	0.2 ml 96-Well Semi-Skirt Plate	White	25 Plates/Pack, 1 Pack/Case

µltraAMP™ PCR Plates

- · Compatible with most robotics, designed to SBS standards
- · Low profile design minimizes condensation and evaporation
- For use with MJ Research thermal cyclers and MegaBACE 500/1000 DNA Analysis Systems
- Optional bar coding available

Cat. No.	Description	Plat	e Color	Packaging
28440	0.2 ml 96-Well Skirted Plate	0	Natural	25/Plates/Pack, 4 Packs/Case
23080	0.2 ml 96-Well Skirted Plate	0	Natural	25/Plates/Pack, 1 Pack/Case
23090	0.2 ml 96-Well Skirted Plate	0	Red	25/Plates/Pack, 1 Pack/Case
23100	0.2 ml 96-Well Skirted Plate	0	Blue	25/Plates/Pack, 1 Pack/Case
23110	0.2 ml 96-Well Skirted Plate	0	Green	25/Plates/Pack, 1 Pack/Case
23120	0.2 ml 96-Well Skirted Plate	0	Yellow	25/Plates/Pack, 1 Pack/Case
28410	0.2 ml 96-Well Skirted Plate	0	Purple	25/Plates/Pack, 1 Pack/Case
37360	0.2 ml 96-Well Skirted Plate	•	Black	25/Plates/Pack, 1 Pack/Case
37370	0.2 ml 96-Well Skirted Plate	0	White	25/Plates/Pack, 1 Pack/Case



- Cerified for use with the MegaBACE 1000 DNA Analysis System
- · Raised tube rims minimize the risk of well-to-well contamination
- Rigid design minimizes warp

Cat. No.	Description	Plate Color	Packaging
28110	96-Well MB plate	Natural	25/Plates/Pack, 2 Packs/Case
28170	96-Well MB plate	Red	25/Plates/Pack, 2 Packs/Case
28130	96-Well MB plate	Blue	25/Plates/Pack, 2 Packs/Case
28190	96-Well MB plate	Green	25/Plates/Pack, 2 Packs/Case
28150	96-Well MB plate	Yellow	25/Plates/Pack, 2 Packs/Case
28290	96-Well MB plate	Purple	25/Plates/Pack, 2 Packs/Case
28290	96-Well MB plate	Purple	25/Plates/Pack, 2 Pa

30

- Optimized for the plate-based Roche LightCycler 480
- Ideal for real-time PCR
- Thin walls reduce cycle times.
- · SBS standard dimensions
- 100% QC
- 100 µl working volume
- · Optional bar coding available

Cat. No.	Description	Plate Color	Packaging
38870	96-Well 480 Plate, White	O White	25/Pack, 4 Packs/Case

µltraAMP™ PCR Plates

- Compatible with most robotic platforms
- Designed to SBS standards
- Rigid skirt for gripping by robotic plate handlers
- · Minimal warp and shrinkage after thermal cycling
- Optional bar coding available

Cat. No.	Description	Plate Color	Packaging
39690	384-Well NX plate	○ Natural	50 Plates/Pack, 2 Packs/Case
39620	384-Well NX plate	Natural	50 Plates/Pack, 1 Packs/Case
37910	384-Well NX plate	Red	50 Plates/Pack, 1 Packs/Case
37920	384-Well NX plate	Blue	50 Plates/Pack, 1 Packs/Case
37930	384-Well NX plate	Green	50 Plates/Pack, 1 Packs/Case
37940	384-Well NX plate	Yellow	50 Plates/Pack, 1 Packs/Case
37960	384-Well NX plate	Purple	50 Plates/Pack, 1 Packs/Case
37970	384-Well NX plate	Black	50 Plates/Pack, 1 Packs/Case
37980	384-Well NX plate	O White	50 Plates/Pack, 1 Packs/Case

- Fits Roche LightCycler 480 real-time plate-based PCR System
- · Opaque wells prevent well-to-well light contamination
- · White finish amplifies signal
- Designed to SBS standards
- · Minimized warp and bowing for robotic handling
- 30 µl working volume
- Seal with optically clear real-time PCR film (sold separately), Cat. No. 36590. Or try the new real-time pressure seal, Cat. No. 26500 (sold separately).
- Optional bar coding available. Sequence can be specified, 1 case minimum order quantity required.

Cat. No.	Description	Plate Color	Packaging
38820	384-Well 480 Plate, White	O White	50 Plates/Pack, 2 Packs/Case

PCR plates are available with a low cost barcoding option. Choose any bar code symbology such as code 39 or code 128. Labels are resistant to many solvents, such as DMSO and withstand the temperature extremes of thermal cycling and freezing at -80°C. Available for Semi-Skirt96, Skirted96, 96-well 480, and all 384-well plates.

Cat. No.	Description	Plate Color	Packaging
74300	0.2 ml 96-Well Semi-Skirted Raised Rim Plate, Bar Coded	Natural	25 Plates/Pack, 4 Packs/Case
30950	0.2 ml 96-Well Skirted Plate, Bar Coded	Natural	25 Plates/Pack, 4 Packs/Case
38880	96-Well 480 plate, Bar Coded	O White	25 Plates/Pack, 4 Packs/Case
31030	384-Well NX plate, Bar Coded	Natural	50 Plates/Pack, 1 Pack/Case
38830	384-Well 480 plate, Bar Coded	O White	50 Plates/Pack, 2 Packs/Case

µltraAMP™ PCR Plates Compatibility Chart

	96 Well µltra Plate	96 Well Fast Plate	Semi-Skirt96 Raised Rim Plate	Skirted96 Plate	96-Well MB Plate	96-Well 480 Plate	384-Well NX Plate	384-Well 480 Plate
Real Time PCR Thermal Cyclers (qPCR Compatible)								
Applied BioSystems								
7000								
7300								
7500								
7700								
7900HT								
Step0ne								
BioRad								
iCycler								
MyiQ								
iQ5								
Eppendorf Mastercycler ep RealPlex								
MJ Research								
Opticon								
Opticon 2								
Chromo 4								
Roche LightCycler 480 Instrument, 96-well								
LightCycler 480 Instrument, 384-well								
Stratagene Mx4000								
Mx3000		-			_			
Techne Quantica								
Quantica	-			-				
PCR Thermal Cyclers								
Applied BioSystems								
Veriti								
9600								
9700								
9800 Fast								
2700/2720								
BioMetra								
Uno								
Uno II								
T1 ThermoCycler								
Tgradient								
Trobot								
Corbett Research	_		_	_	_		_	
Palm Cycler 96		•	-	•				
Palm Cycler 384								

	96 Well µltra Plate	96 Well Fast Plate	Semi-Skirt96 Raised Rim Plate	Skirted96 Plate	96-Well MB Plate	96-Well 480 Plate	384-Well NX Plate	384-Well 480 Plate
PCR Thermal Cyclers (continued)								
Eppendorf								
MasterCycler								
MasterCycler ep								
MasterCycler M384								
PTC-100								
PTC-200								
PCT- 225 Tetrad								
Dynad/Disciple								
RoboCycler								
TouchGene Gradient (TC512)								
Genius (TC412)								
TouchGene X								
Flexi								
Gene								
Genius								
ThermoHybaid								
PCR Sprint								
PCR Express								
Multi Block System								
Touchdown								
Omnigene								
Omn-E								
pxe								
px2								
TaKaRa	_		_					
TP240								
TP3000								
11 3000				-				
Sequencers								
Applied Biosystems								
310								
3100								
3130								
3700	-							
3730/3730x								
Amersham	_			_	_		_	
Amersnam Megabace 500								
Megabace 1000								
MegaBace 4000								
							-	
MJ Research								
BaseStation								
Transgenomics								
Wave System								

µltraAMP[™] PCR Plate and Tube Sealers

µltra**Amp**".

PCR Plate and Tube Sealing Options

PCR plates have slightly raised rims on wells for optimum sealing. Adhesive seals and cap strips prevent evaporation during thermal cycling or storage. Sealing mats can be reused up to five times and achieve complete sealing with screw/clip-down hot lid thermal cyclers.

µltraAMP™ PCR Plate and Tube Sealers

Aluminum PCR Plate Seal

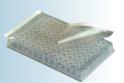
- · Seals all types of plates
- Chemical resistant
- Effective -80°C to + 120°C

Cat. No.	Description	Packaging
36890	Aluminum PCR Plate Seal	100 Seals/Case

Clear PCR Plate Seal

- Seals most plates
- Rated from -40°C to +125°C
- Polypropylene

Cat. No.	Description	Packaging	
36190	Clear PCR Plate Seal	100 Seals/Case	


Real Time PCR Plate Seal

- · Optically clear for Real-Time PCR
- Fits most popular PCR plates
- Recommended for use between -40°C and +120°C

Cat. No.	Description	Packaging	
36590	Real Time PCR Plate Seal	100 Seals/Case	

Real Time PCR Plate Pressure Seal

- High quality pressure seal
- Optically clear for Real-Time PCR
- Ultra Clear

- Easy positioning
- Fits most popular PCR plates
- Cat. No.
 Description
 Packaging

 26500
 Real Time PCR Plate Pressure Seal
 100 Seals/Case

PCR Plate Silicone Sealing Mat

- Fits most popular PCR plates
- · Minimizes evaporation in PCR and storage
- · Reusable up to 5 times

Cat. No.	Description	Packaging	
26520	PCR Plate Silicone Sealing Mat	10 Mats/Case	

Cap Strips

- Flat caps are ideal for real-time PCR Fit 96-well plates and µltraStrips
- · Caps are easy to apply

Cat. No.	Description	Packaging	
37990	Optically Clear Flat Cap Strips, Natural	250 Cap Strips/Case	
38780	Domed Cap Strips, Natural	250 Cap Strips/Case	

PCR Tubes

0.2 ml PCR µltraStrips

- Eight 0.2 ml tubes with dual connectors between reaction tubes and caps for added strength
- Thin-wall design provides maximum PCR efficiency
- · Easily cut for use as individual tubes

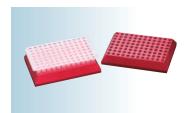
Cat. No.	Cap Type	Color	Packaging	Quantity		
38790*	None	Natural	Non-Sterile, Bagged	250 Tube Strips/Bag, 1 Bag/Case		
37350	Flat, Optically Clear	Natural	Non-Sterile, Bagged	250 Tube & Cap Strips/Bag, 1 Bag/Case		
15090	Flat, Optically Clear	Natural	Non-Sterile, Bagged	250 Tube & Cap Strips/Bag, 10 Bags/Case		
16380	Domed	Natural	Non-Sterile, Bagged	250 Tube & Cap Strips/Bag, 1 Bag/Case		
16280	Domed	Natural	Sterile, Bagged	24 Tubes & Cap Strips/Bag, 5 Bags/Case		
14430	Domed	Red	Non-Sterile, Bagged	250 Tube & Cap Strips/Bag, 1 Bag/Case		
16290	Domed	Red	Sterile, Bagged	24 Tubes & Cap Strips/Bag, 5 Bags/Case		
16400	Domed	Blue	Non-Sterile, Bagged	250 Tube & Cap Strips/Bag, 1 Bag/Case		
16300	Domed	Blue	Sterile, Bagged	24 Tubes & Cap Strips/Bag, 5 Bags/Case		
16410	Domed	Green	Non-Sterile, Bagged	250 Tube & Cap Strips/Bag, 1 Bag/Case		
16310	Domed	Green	Sterile, Bagged	24 Tubes & Cap Strips/Bag, 5 Bags/Case		
16420	Domed	Yellow	Non-Sterile, Bagged	250 Tube & Cap Strips/Bag, 1 Bag/Case		
16320	Domed	Yellow	Sterile, Bagged	24 Tubes & Cap Strips/Bag, 5 Bags/Case		
* 38790 is tube strip only, cap strip available separately.						

0.2 ml Single PCR Tubes with Attached Caps

- Attached cap minimizes risk of carry-over contamination
- Thin-wall design provides maximum PCR efficiency
- Fits most popular thermal cyclers

Cat. No.	Сар Туре	Color	Packaging	Quantity
16950	Flat, Optically Clear	Natural	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
16960	Flat	Red	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
16970	Flat	Blue	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
16980	Flat	Green	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
16990	Flat	Yellow	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case
23190	Domed	O Natural	Non-Sterile, Bulk Bag	500 Tubes/Bag, 10 Bags/Case
14720	Domed	O Natural	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case

0.65 ml PCR µtraTubes with Attached Caps



- Thin-wall design provides maximum PCR efficiency
- · Frosted surfaces on the cap and side wall for sample identification
- Fits most popular thermal cyclers and thermal cyclers

Cat. No.	Cap Type	Color	Packaging	Quantity
15160	Flat, Optically Clear	Natural	Non-Sterile, Bulk Bag	1,000 Tubes/Bag, 10 Bags/Case

Freeze Block

Anodized aluminum Freeze Blocks maintain temperature at 0° C for one hour after freezing and provide a stable platform for PCR reaction set-up. Fits 0.2 ml PCR tubes, tube strips or 96-well PCR plates.

Cat. No.	Description	Plate Color	Packaging
13280	Freeze Block	Red	1 Block/Case

DeepWell Plates

- 1.2 ml plates have round wells
- 2.2 ml plates have square wells
- Plates and mats have an alphanumeric grid reference for easy sample identification
- Autoclavable

Cat. No.	Description	Plate Color	Packaging
23180	1.2 ml DeepWell Plate, Sterile	Natural	20/Case
23150	1.2 ml DeepWell Plate	Natural	20/Case
23170	2.2 ml DeepWell Plate, Sterile	Natural	20/Case
23130	2.2 ml DeepWell Plate	Natural	20/Case
23140	Cap Mat for 2.2 ml DeepWell Plates	Natural	20/Case
23160	Cap Mat for 1.2 ml DeepWell Plates	Natural	20/Case

Reagent Reservoirs

Multi Reagent Reservoirs – Single channel to 16-channel pipettor reservoirs

- Designed to accommodate all types of pipettors
- Graduation marks on interior wall
- Lot certified RNase/DNase-free and non-pyrogenic
- Made of FDA grade plastic
- Pour-off spouts on each corner
- Sterility validated to 10⁻⁶

Cat. No.	Volume	Sterile	Material	Packaging/Quantity	Cases/Pallet
39900	25 ml	Yes	Polystyrene	Individually Wrapped, 100/Case	72
39910	25 ml	Yes	Polystyrene	5 Reservoirs/Pack, 40 Packs/Case	72
39920	25 ml	No	Polystyrene	Bulk, 100/Case	162
39930	55 ml	Yes	Polystyrene	Individually Wrapped, 80/Case	72
39940	55 ml	Yes	Polystyrene	5 Reservoirs/Pack, 32 Packs/Case	72
39950	55 ml	No	PVC (Clear)	Bulk, 100/Case	162
39960	100 ml	Yes	Polystyrene	Indivdually Wrapped, 100/Case	60
39970	100 ml	Yes	Polystyrene	5 Reservoirs/Pack, 40 Packs/Case	60
39980	100 ml	No	Polystyrene	Bulk, 100/Case	162

- 5 ml trough fits 4-channel pipettors.
- 10 ml trough fits 8-channel/16-channel pipettors
- Ideal for a 12-channel pipettor for use with two different reagents

Cat. No.	Volume	Sterile	Material	Packaging/Quantity	Cases/Pallet
38160	25 ml	Yes	Polystyrene	Individually Wrapped, 100/Case	72
38170	25 ml	Yes	Polystyrene	5 Reservoirs/Pack, 40 Packs/Case	72
38180	25 ml	No	Polystyrene	Bulk, 100/Case	162

You know us as a liquid handling company, a leading provider of quality plastic consumables. Sorenson products are used in research labs worldwide and include pipette tips, PCR products, microcentrifuge tubes, MµltiFlex™ gel loading tips, and the innovative, ergonomic and environmentally-friendly OneTouch tips.

40

| Cat. No. Page |
|----------------------|----------------------|----------------------|----------------------|----------------------|----------------------|
| 10040 11 | 1238022 | 13810 13 | 17330 13 | 34760 11 | 74010 27 |
| 10080 11 | 12390 22 | 13890 13 | 17340 13 | 34770 11 | 74020 27 |
| 10130 11 | 12400 22 | 13900 13 | 17350 13 | 36060 5 | 74030 27 |
| 1019011 | 1241022 | 13920 13 | 17360 13 | 3619035 | 74300 31 |
| 10200 11 | 12420 22 | 13930 13 | 2197029 | 36590 35 | 74310 29 |
| 10230 11 | 12430 22 | 13980 9 | 21980 29 | 36890 35 | 74320 29 |
| 10300 7 | 1244022 | 14200 5 | 2199029 | 37350 36 | 74330 29 |
| 10300 27 | 12450 22 | 142105 | 22000 29 | 3736030 | 74340 29 |
| 10310 7 | 12470 23 | 14220 5 | 2201029 | 3737030 | 74350 29 |
| 10310 27 | 12480 23 | 14430 36 | 2217029 | 376409 | 74360 29 |
| 103207 | 12490 23 | 14720 36 | 222109 | 376509 | 7437029 |
| 10320 27 | 12500 23 | 150205 | 222209 | 37660 9 | 74380 29 |
| 10330 7 | 12510 23 | 15090 36 | 2308030 | 37820 9 | 74390 29 |
| 10330 27 | 12520 23 | 15100 13 | 2309030 | 37860 29 | 10190T11 |
| 10340 | 12530 23 | 15110 13 | 23100 30 | 3787029 | 10200T11 |
| 10340 27 | 12540 23 | 15120 13 | 2311030 | 37910 31 | 10230T11 |
| 103507 | 12550 23 | 15130 13 | 2312030 | 37920 31 | 10470T10 |
| 10350 27 | 12560 23 | 15160 36 | 2313037 | 37930 31 | 10520T10 |
| 10360 7 | 1257023 | 1517021 | 2314037 | 3794031 | 13980T9 |
| 10370 7
10380 7 | 12580 23 | 1517025 | 2315037 | 37960 31 | 14200T 5
14210T 5 |
| 10390 7 | 12590 23
12610 23 | 15190 21
15190 25 | 23160 37
23170 37 | 37970 31
37980 31 | 1421015
14220T5 |
| | | | | 3799035 | 15020T5 |
| 10400 7
10410 7 | 12620 23
12630 23 | 15360 10
15370 10 | 23180 37
23190 36 | 38000 5 | 15270T10 |
| 10420 7 | 12640 23 | 15400 25 | 235609 | 38160 38 | 15660T10 |
| 10450 | 12650 23 | 15410 25 | 235709 | 3817038 | 15670T10 |
| 104607 | 12660 23 | 15460 25 | 235809 | 3818038 | 15720T10 |
| 1047010 | 1267023 | 15470 25 | 26190 29 | 3878035 | 17370T-X 5 |
| 10500 10 | 12680 23 | 15480 25 | 26500 35 | 3879036 | 17370-X5 |
| 10520 10 | 1269023 | 15490 25 | 26520 35 | 3880029 | 22210T9 |
| 10590 10 | 1270023 | 15510 25 | 2772010 | 3882031 | 22220T9 |
| 1062010 | 1271023 | 15530 22 | 2773010 | 3883031 | 23560T9 |
| 10660 10 | 12880 23 | 1557023 | 2776010 | 3887030 | 23570T9 |
| 1106019 | 12890 23 | 15590 23 | 2777010 | 38880 31 | 23580T9 |
| 11080 19 | 12910 24 | 15610 24 | 277809 | 3890029 | 27760T10 |
| 1112019 | 12920 24 | 15630 24 | 277909 | 39620 31 | 27770T10 |
| 1115019 | 12930 24 | 15660 10 | 2811030 | 39690 31 | 27780T9 |
| 1116019 | 12940 24 | 15670 10 | 2813030 | 39900 38 | 27790T9 |
| 1117019 | 12950 24 | 1572010 | 2815030 | 39910 38 | 28200T5 |
| 1119019 | 12960 24 | 15730 10 | 2817030 | 39920 38 | 30430T10 |
| 1121019 | 1297024 | 16130 21 | 2819030 | 39930 38 | 30450T10 |
| 11300 20 | 12980 24 | 16140 20 | 282005 | 39940 38 | 30470T9 |
| 11430 19 | 12990 24 | 16280 36 | 2829030 | 39950 38 | 30510T-X 5 |
| 1145019 | 13000 24 | 16290 36 | 2841030 | 39960 38 | 30510-X5 |
| 1149019 | 13010 24 | 16300 36 | 2844030 | 39970 38 | 30550T5 |
| 11500 19 | 1302024 | 16310 36 | 2848013 | 3998038 | 30800T11 |
| 11510 19 | 13030 24 | 16320 36 | 3035029 | 70500 9 | 30920T11 |
| 11540 19 | 1305024 | 16380 36 | 3043010 | 70510 10 | 30930T11 |
| 11560 19
11590 19 | 13060 24
13070 24 | 16400 36
16410 36 | 30440 10
30450 10 | 70520 10
70530 11 | 31770T11
31780T11 |
| 11920 19 | 13080 24 | 16420 36 | 3046010 | 70540 11 | 31790T11 |
| 11940 19 | 13090 24 | 16470 21 | 304709 | 70600 9 | 36060T5 |
| 11980 19 | 13100 24 | 16480 21 | 305505 | 70610 10 | 37640T9 |
| 12000 19 | 13110 24 | 16490 21 | 30800 11 | 7062011 | 37650T9 |
| 12020 19 | 1312024 | 16500 21 | 3092011 | 707009 | 37660T9 |
| 12030 19 | 1313024 | 16510 21 | 3093011 | 7071010 | 37820T9 |
| 1204019 | 1314024 | 16890 21 | 3095031 | 7072010 | 38000T5 |
| 12060 19 | 1315024 | 16950 36 | 31030 31 | 70730 11 | 39640T20 |
| 1216020 | 1316024 | 16960 36 | 3161011 | 70740 11 | 73750T 27 |
| 1233022 | 13170 24 | 16970 36 | 3177011 | 73960 26 | 73760T27 |
| 1234022 | 13280 37 | 16980 36 | 3178011 | 73970 26 | 73770T27 |
| 12350 22 | 13760 13 | 16990 36 | 3179011 | 73980 27 | |
| 12360 22 | 1377013 | 17310 13 | 34000 5 | 73990 26 | |
| 1237022 | 1379013 | 17320 13 | 3475011 | 74000 26 | |
| | | | | | |

NOTES

